OBJECTIF:

Les enquêteurs ont retrouvé de la terre sur le lieu du crime, et veulent savoir d'où elle provient. Ils ont alors prélevé trois échantillons de terre :

- Echantillon A : sur le lieu du crime
- Echantillon B :sur le lieu de travail
- Echantillon C :sur le lieu d'habitation

Puis ils ont envoyé ces échantillons dans un laboratoire.

Votre travaille consistera à analyser ces échantillons de terre afin de déterminer la provenance de la terre trouver sur le lieu du crime.

I. Etude du pH d'un sol

1. Définition du pH

Le pH est un coefficient qui caractérise l'acidité d'un sol, due à la présence d'ions H⁺, ou la basicité. Il définit la concentration d'ions H⁺ dans la phase liquide du sol. Le pH varie de 0 à 14 et la neutralité est atteinte lorsque le pH est égal à 7.

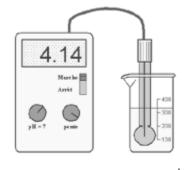
On peut classer les sols selon leur acidité de la manière suivante :

- pH < 4,5 : sols très acides.
- 4,5 < pH < 6 : sols faiblement acides
- 6 < pH < 7 : sols équilibrés permettant une bonne alimentation minérale
- pH > 7 : sols calcaires et /ou salés.

Le pH se mesure à l'aide d'un pH-mètre

2. Protocole expérimental

Première étape : préparation des solutions


- ☑ Peser exactement 10,0g de sol A, B et C.
- Verser chaque pesée dans un bécher que l'on notera A, B et C.
- ☑ Ajouter 50 ml d'eau distillée
- ☑ Introduire un barreau aimanté dans chaque bécher et agiter les solutions pendant 30 min à l'aide d'un agitateur magnétique.
- 1°> Faire le schéma légendé de la première étape du montage.

Deuxième étape : filtration des solutions

- Placer un entonnoir sur un bécher haut
- ☑ Placer un filtre sur l'entonnoir et filtrer la solution A
- Faire de même pour la solution B et C
- **2°>** Faire le schéma légendé de la deuxième étape du montage.

* Troisième étape : mesure du pH

- ☑ Régler le pH-mètre : le calibrage se fait avec une solution tampon à pH=7 et une à pH=4.
- ✓ Introduire la sonde pH-métrique dans une des solutions et relever la valeur du pH.
- ✓ Nettoyer le pH-mètre et mesurer le pH de la deuxième solution
- **3°>** Faire le schéma légendé de la deuxième étape du montage.
- 4°> Noter les différentes valeurs de pH mesurées

II. Etude de la teneur en sel minéraux d'un sol

1. Protocole expérimental

Pour identifier la présence d'ion en solution, on effectue des tests mettant en jeu une réaction chimique. Pour cela **on verse une petite quantité de réactif** approprié dans le tube à essais contenant la solution à tester et on observe.

Tableau récapitulatif des tests caractéristiques d'identification des ions :

ION A IDENTIFIER	REACTIF	OBERVATION:
Fe ²⁺	Soude (Na ⁺ ; HO ⁻)	
Fe ³⁺	Soude (Na ⁺ ; HO ⁻)	
Ca ²⁺	Soude (2Na ⁺ ; SO₄²⁻)	
Mg ²⁺	Soude (Na ⁺ ; HO ⁻)	
Mn ²⁺	Soude (Na ⁺ ; HO ⁻)	
Cl ⁻	Nitrate d'argent (Ag ⁺ ; NO₃⁻)	
SO ₄ ²⁻	Chlorure de baryum (Ba ⁺ ; Cl⁻)	

- ☑ Introduire dans un tube a essais environ 2ml de la solution contenant l'ion à caractériser à l'aide de la pipette.
- ✓ Introduire ensuite quelques goute du réactif à l'aide d'une pipette.
- ☑ Observer et noter vos observations dans le tableau.

2. Détermination de la présence d'ion dans les échantillons

- ✓ Introduire 2ml de l'échantillon A à tester dans 7 tubes à essais
- ☑ Effectuer les tests de reconnaissance des ions.
- ✓ Noter vos observations
- ☑ Recommencer les tests avec l'échantillon B et C

III. Conclusion

A l'aide des résultats précédents, déterminer la composition et la provenance de l'échantillon de terre prélevé sur le lieu du crime.

SEULIN Gaelle 2nd MPS

TP

)

Etude de la composition d'un sol

PAILLASSE ELEVE:

- ❖ 2 échantillons de terre différente :
 - 20g de terre que l'on séparera en 2 récipients différents notés A et B
 - 20g de terre C

Terre de pH différents et de composition en ions différents, (Fe²⁺, Fe³⁺, Ca²⁺, Mg²⁺, Mn²⁺, Cl⁻)

- ❖ Balance
- ❖ 3 béchers de 200mL
- ❖ 3 béchers haut de 100mL
- ❖ Agitateur magnétique + barreau aimanté
- ❖ 3 Entonnoirs + 3filtres
- pH mètre + potence pour suspendre l'électrode + solution étalon + fiche méthode.
- ❖ 14 tubes à essais
- Pipettes plastiques
- ❖ 1 éprouvette 100mL
- ❖ Solution de:

ION A IDENTIFIER	REACTIF
Fe ²⁺	Soude (Na ⁺ ; HO ⁻)
Fe ³⁺	Soude (Na ⁺ ; HO ⁻)
Ca ²⁺	Soude (2Na ⁺ ; SO₄²⁻)
Mg ²⁺	Soude (Na ⁺ ; HO ⁻)
Mn ²⁺	Soude (Na⁺ ; HO ⁻)
CI ⁻	Nitrate d'argent (Ag ⁺ ; NO ₃ ⁻)
SO ₄ ²⁻	Chlorure de baryum (Ba ⁺ ; Cl ⁻)